Resolvent Estimates for Normally Hyperbolic Trapped Sets

نویسندگان

  • JARED WUNSCH
  • MACIEJ ZWORSKI
  • M. ZWORSKI
چکیده

We give pole free strips and estimates for resolvents of semiclassical operators which, on the level of the classical flow, have normally hyperbolic smooth trapped sets of codimension two in phase space. Such trapped sets are structurally stable – see §1.2 – and our motivation comes partly from considering the wave equation for slowly rotating Kerr black holes, whose trapped photon spheres have precisely that dynamical structure – see §2. From the semiclassical point of view an example to keep in mind is given by P (z) = −h∆ + V (x)− 1− z , V ∈ C∞ c (R;R) ,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-trapping Estimates near Normally Hyperbolic Trapping

In this paper we prove semiclassical resolvent estimates for operators with normally hyperbolic trapping which are lossless relative to nontrapping estimates but take place in weaker function spaces. In particular, we obtain non-trapping estimates in standard L2 spaces for the resolvent sandwiched between operators which localize away from the trapped set Γ in a rather weak sense, namely whose ...

متن کامل

Dispersive Estimates for Manifolds with One Trapped Orbit

For a large class of complete, non-compact Riemannian manifolds, (M, g), with boundary, we prove high energy resolvent estimates in the case where there is one trapped hyperbolic geodesic. As an application, we have the following local smoothing estimate for the Schrödinger propagator:

متن کامل

Applications of Cutoff Resolvent Estimates to the Wave Equation

We consider solutions to the linear wave equation on non-compact Riemannian manifolds without boundary when the geodesic flow admits a filamentary hyperbolic trapped set. We obtain a polynomial rate of local energy decay with exponent depending only on the dimension.

متن کامل

Distribution of resonances for manifolds with hyperbolic ends

Distribution of resonances for manifolds with hyperbolic ends by Kiril Datchev Doctor of Philosophy in Mathematics University of California, Berkeley Professor Maciej Zworski, Chair Quantum decay rates appear as imaginary parts of resonances, or poles of the meromorphic continuation of the resolvent of the Laplacian. As energy grows, decay rates are related to properties of geodesic flow and to...

متن کامل

Analytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces

In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010